Plant blindness

You may or may not of heard of the term ‘plant blindness’; it’s a phrase that we in the Botanic Garden have been hearing much more of in recent years and will continue to throw around in the future. It refers to the slow shutting off of plant knowledge from generation to generation resulting in an inability to acknowledge plants around us. The simple things that were once common knowledge, such as dock leaves used for nettle stings are becoming bred out of a collective instinct and plants are becoming irrelevant and annoying green things to many people.
I can remember when my eyes were truly opened. I noticed trees that I hadn’t before; as I walked along the street I started looking at the borders and the hanging foliage all around me. Before, I’m not sure what I looked out for in the streets, the pavement or the shops, who knows, but plants for sure changed my life and I see them changing the lives around me at the Botanic Garden. I think I could live to be three hundred and still find something in the plant world that fascinated me. This week I learnt about the incredible relationships between some species of orchid and ants. The ants don’t pollinate the orchid flower but hang around the plant living off an ‘extrafloral’ nectar secreted elsewhere; they then do everything to protect their food source and keep the plant safe. Plants and animals have these delicate relationships that allow both to flourish, and it’s fair to say that ours has become less delicate over the years.
Dandelion seed head
This change in the collective instinct of people has come about through successive generations becoming more urbanised with less plant interaction such as blowing a dandelion seed head, throwing a grass seed dart, eating wild blackberries or sticking cleavers to jumpers; children still do this but there are many who don’t and lose a connection with the plant world. The result of this is that education reduces the amount of plant learning, and in biology courses there is a main focus on the animal kingdom; there is a perceived lack of interest in the plant world. Things have become so bad that the Oxford Junior Dictionary removed words like ‘acorn’ and ‘buttercup’ preferring instead ‘broadband’ and ‘cut and paste’; they were seen as no longer relevant to a child’s life.
University of Bristol Botanic Garden
There is however, a great appetite among young people to be green, to recycle and mend the excesses of the generations that went before them; often students tell me it’s the biggest issue for them and they’d like to make a difference. How is a difference made? I think we can all make a simple difference by introducing plants to friends and relatives, opening eyes to the trees and weeds and the force of life going on around us and under our feet. It could be argued that many of the world’s problems can be solved with plants; forests, food, habitats are all areas that need experts, and while there are many graduates of zoology degrees there are few from plant sciences. This is changing with Universities now offering full plant science degrees; there are many jobs in plant sciences as governments and companies are beginning to see how important it is. Bristol University is launching a plant science degree starting in September 2019 based in the magnificent Life Sciences building with a group of world experts in the field of plant science. Of course, undergraduates will use the Botanic Garden as a second home and have access to all our knowledge and experience, we’re really looking forward to it. If you, a relative, son or daughter are interested click here to view the degree.
We all have a role to play in protecting our relationship with the natural world which can be played by simply talking about the plants we see to people. I’m always disposed to optimism and today’s

young people seem to be committed to green ways; this problem arose through successive generations and perhaps it can be cured in the same way, the passing down of knowledge as we go.

By Andy Winfield

The Impossible Garden

We’ve always felt that art and the Garden work well together. Every Easter we run a sculpture exhibition which brings this home, plants and art are good friends; nature’s sculpture makes the Garden a gallery and placing human art amongst it embellishes both. With this in mind, for some time we’ve wanted to show a permanent summer exhibition but nothing has fit the bill.
Luke Jerram on one of his exhibits.

Step in Luke Jerram this year. If art and plants are good friends, so are Luke and Bristol; he has created a perfect replica of the moonwhich is floating at various locations around the world at the moment; he created a giant water slide down one of Bristol’s busiest shopping streets for one day in 2014, a day that brought the city together, everyone was smiling; he also positioned pianos around the city for anyone to play, I’d love walking home from work to hear music drifting along the street. As you can see Luke is very much a force for good in the city, and unknown to us was regularly visiting the Garden with his family. So, when he contacted us to ask if it was ok to display The Impossible Garden here we took five seconds before nodding vigorously, yes please!

The exhibition sits well in the Garden and is the outcome of a residency at the Bristol Vision Institute (BVI); Luke is colour-blind and wanted to explore the processes and limitations of vision. With the help of Bristol University BVI researchers and the Bristol Eye Hospital he spent time with visually impaired children to help him understand. The result is a series of exhibits that are fun yet also thought provoking, making you question how you perceive objects, colours, reflections and patterns.

One thing that highlights the diversity of exhibits is that every member of the Botanic team has a different favourite showing that we all observe things in a different way from each other.
I think this is one of the best events we’ve had here at the Botanic Garden; it’s a real pleasure to see visitors ‘getting’ the exhibition, from youngsters to their grandparents. Everyone sits on the oversized picnic bench, peeps into the infinite pool, tries the door to nowhere and sits on the glitchy park bench.
It looks like Luke has nailed another one.
The exhibition runs throughout the summer and the Garden is open for seven days a week from 10 until 4:30; see you here!

Andy Winfield

Bristol is buzzing, how the city is helping pollinators

By Helen Roberts

There has been a substantial amount of press coverage recently on the plight of our pollinators. They are now less abundant and widespread than they were in the 1950s. A number of threats are responsible, including habitat loss, disease, extreme weather, climate change and pesticide use.
A swathe of flowers for pollinators bring a
lot of cheeriness on a grey autumn day on
Horfield Common, Bristol.
Photo credit: Nicola Temple
There is not one smoking gun among these threats, but rather the combination that has endangered some species in the UK. Loss of wild flower rich habitat (due to intensive agriculture, industrialisation and urbanisation) escalates the effect of disease, extreme weather, climate change and pesticide use. Without food or shelter, pollinators are more vulnerable.

 Whilst visiting the University of Bristol Botanic Garden this autumn, I noticed the abundance of pollinators busily visiting many different flowers from the orchid look-a-like flower of Impatiens tinctoria to the swathes of Rudbeckia sp. and Verbena bonariensis. This year saw the 6th year of the University of Bristol Botanic Garden hosting the Bee and Pollination Festival in September. The Community Ecology Group from Bristol’s School of Biological Sciences was exhibiting and promoting their research as well as the exciting Get Bristol Buzzing initiative.
To find out more about pollinator research at the University, I met up with Dr Katherine Baldock, a Natural Environment Research Council Knowledge Exchange Fellow from the School of Biological Sciences and the Cabot Institute, to discuss the group’s work.
“Most people know that pollinators are important, but quite often don’t know what to do to help them, “ explained Katherine. “And this is where our research at the University comes into play”.
The aim of Katherine’s fellowship is to improve the value of the UK’s urban areas for pollinators by working with various stakeholders, such as city councils, conservation practitioners and the landscape industry. 

Translating science into solutions

NERC KE Fellow Dr Katherine Baldock.
Photo credit: Nicola Temple.

Up until 2014, Katherine worked on the Urban PollinatorsProject, which is researching insect pollinators and the plants they forage on in urban habitats.
Building upon research from this project and her current Fellowship, Katherine and her Bristol colleagues have contributed to the development of  a Greater Bristol Pollinator Strategy(2015-2020). The University research group has teamed up with Bristol CityCouncil, the Avon Wildlife Trust, Friends of the Earth Bristol, Buglife, SouthGloucestershire Council and the University of the West of England to implement this with the aim of protecting existing habitat and increasing pollinator habitat in the Greater Bristol area.
The group is also raising awareness of the importance of pollinators to a wide-ranging audience within the city and further afield. This is the first local pollinator strategy within the UK and follows closely in the wake of the Department for Environment, Food and Rural Affairs’ National Pollinator Strategy launched in 2014. It will help to promote aspects of the national strategy relevant to urban areas and hopefully set a precedent for the development of other local pollinator strategies throughout the UK.
The local pollinator strategy outlines actions that will help fulfill the strategy aims, including:
·         formation of a Local Pollinator Forum intended to share knowledge and best practice,
·         establishment of a joined-up approach to pollinator conservation by linking projects through the Get Bristol Buzzing initiative,
·         working with the public in local areas to explain actions they can take as individuals.
“Urban green spaces are important corridors for wildlife and help to provide linkages across the country”, explained Katherine. I envisaged a series of insect aerial motorways linking the whole of the UK, invisible threads connecting countryside, urban fringe and city centres.

The bee link-up

The Get Bristol Buzzing initiative is doing just that, as one of its strategic aims with the local pollinator strategy for 2016-2020, is to “Map pollinator habitat and identify target sites that allow habitat networks and stepping stones to be created to enable pollinators to move through urban areas”.
Katherine talked about how engaging the public at ground level was really important to Get Bristol Buzzing. The initiative is the pollinator component of My Wild City, a project whose vision is for people in Bristol to help transform spaces into a city-wide nature reserve. A number of interactive maps have been created that allow people to add what they have been doing in their area to help wildlife. The Get Buzzing initiative will feed into these maps.
Kath said, “The fact that you can add yourselves onto a map makes the Get Buzzing Initiative really visually appealing to people and much more personal.”

So, what can you do at home to help urban pollinators?

·         Plant for pollinators. Think about what plants you have in your garden. Could you change the planting or improve on it to make it more attractive to pollinators? Think about growing species that have nectar and pollen rich flowers and let your lawn grow longer to allow plants to flower.
·         Avoid pesticides. Most gardeners like their plants to remain pest free but avoid the temptation to use pesticides and accept the fact that you will lose some plants to pests. Instead try to encourage wildlife that will devour those pests or cultivate plants that will deter pests. 
·         Provide habitat. As pollinators need a home, you can always make your own nest boxes if you want to give your pollinating visitors a helping hand by drilling holes in a log or by bundling up lengths of hollow sticks such as bamboo. Visit the Botanic Garden’s bee hotel for inspiration!
“Setting aside a wild bit of garden can help pollinators by providing food, but provides nesting sites too”, remarked Katherine.

Additional information:

·         The Urban Pollinators Project was recently listed as one of the top 10 ground-breaking research projects in the Daily Telegraph. Read more.

·         Results from this research have recently been published in the Proceedings of the Royal Society B with more publications in press. A list of publications can be found here.

·         You can read more about Dr Katherine Baldock and the Urban Pollinators Project on page 7 of the 2015 edition of the Cabot Institute’s magazine.

Undergraduates get their first glimpse at the garden

By Alida Robey

I’ve been promising myself a visit to the University of Bristol Botanic Garden since I arrived in Bristol four years ago. Life has intervened. Yet when the opportunity came to join the new intake of students from the University on their first practical of their 3 year undergraduate degree, I leapt at the chance. 
Once there, the thrill of the plants, garden, stories and mysteries within, were hard to resist!  I joined the briefing given by the Garden’s curator, Nick Wray, as he introduced the day’s second group of 70 students (over 250 students attended the practical over two days) to their PhD student demonstrators – there to inspire the undergraduates about different aspects of the gardens.  

An introduction to the day

These biology and zoology students were visiting the garden as part of their ‘Diversity of Life’ module – taking a first-hand look at some of the adaptations that have enabled plants to diversify into the more than 400,000 species that exist today. Beyond this, however, the practical offers an opportunity for the students to get to know each other and learn to work collaboratively, gain confidence in sharing knowledge,  as well as orientate themselves to this incredible resource available to them.
Nick and the demonstrators were up against time and the logistics of manoeuvring 70 students around 6 ‘work stations’. Students were split into manageable groups and two volunteer guides were brought in to assist moving the groups swiftly through the rotation of topics presented around the garden.
Off we went. As a newcomer myself, I shared the sense of wonderment and awe one student expressed as she exclaimed at how much more there was at the Garden than she had expected. She pointed out how interestingly organised the gardens were, which effectively revealed the story of plant evolution – a set-up that Nick had explained was unique to the University of Bristol Botanic Garden.

Into the glasshouses for plants that eat and are eaten

I followed a group into the glasshouses where Edith showed us the adaptations plants have evolved to cope with extreme habitats. Plants from very different families share common features that are adaptive in similar conditions. Euphorbia, for example, which grows in the deserts of Africa is so similar to the form of cacti found in the deserts of America that they are often misidentified – this is an example of convergent evolution.
The striking Haemanthus coccineus – a native of South Africa -flowers and then sets seed in autumn to coincide with the first rains, giving the seedlings a full rainy season to develop. The leaves appear well after the flowers to reduce the amount of moisture lost prior to the rains. Edith pointed out carnivorous plants that have adapted to nutrient poor habitats. She showed us a plant that produces citronella to deter insects and a species that looked half eaten to make it less attractive to herbivores.
The group was then passed along to Nick who ushered us into the tropical greenhouse to reveal further wonders, such as the orchids of Mexico that require pollination by moths to produce vanilla pods. When commercially produced in the Comoros Islands, pollination is done by hand for every flower – a task often given to children in this struggling economy. We saw the giant lily pads of Victoria cruziana. Reminiscent of triffids, Nick pointed out that in summer they have to be cut back every three days to prevent them growing out of the pond.
Nick Wray shows the students the largest seed in the world.
Photo credit: Nicola Temple

Hmmm… time to escape back into the fresh air where things were growing at a more manageable pace for me, but Nick continued to show the group other commercially important plants, such as lotus, bananas and cotton. He held up a specimen of the world’s largest seed – that of the sea coconut or coco de mer (Lodoicea maldivica), which can weigh up to 30 kg.

The students were then taken into an area of the glasshouses that’s not open to the public and shown some very rare and unique plants, including Amborella trichopoda, which is of particular interest because molecular analyses suggest this is one of the earliest flowering plants. It is the last remaining species of a group that first appeared on Earth more than 140 million years ago, when dinosaurs still dominated the animal kingdom.  A sprawling shrub native to New Caledonia, Amborelladoesn’t cope with changes in humidity very well, so it is kept behind plastic to control the humidity.
Some students scribbled madly, while others just chose to listen as Nick enthusiastically explained what a unique experience this is for University of Bristol students.  ‘Until last year, Bristol was the only botanic garden in the UK growing this plant,’ said Nick. (The University of Cambridge has recently acquired one.)

New Zealand garden – survival of the species

In the New Zealand garden, Dave showed the radical ways plants survive difficult conditions; in this case, the attentions of the now extinct Moa bird. This was graphically illustrated by Pseudopanax, which starts off its first 10 years or so as a sapling with hard, spiky, downward facing sword-like leaves. Once considerably taller – namely beyond the reach of 3m tall Moas – the trees don’t invest as much energy into being unpalatable and transform into an unrecognisably different form, with soft and safely inaccessible leaves reaching to the light.

Angiosperm phylogeny explained

A group gathers around the pond to learn about angiosperm
phylogeny. Photo credit: Nicola Temple

I moved on to hear about angiosperm phylogeny; a new term for me, but more exciting and less daunting than it sounds. In the past, plants were classified into family groupings based on their physical characteristics. With the advent of DNA sequencing in the last 20 years, we can use genetic relatedness to help us understand how plants have evolved. James, our demonstrator, pointed out some of the oldest species of flowering plants, including star anise (Illicium verum). This area of the garden is organised into the two major groups of flowering plants monocotyledons (seed has single embryonic leaf) and dicotyledons (seed with two embryonic leaves). The monocots include plants such as orchids and grasses, including agriculturally important species such as rice, wheat, barley and sugar cane. The more familiar garden plants, shrubs and trees, and broad-leafed flowering plants such as magnolias, roses, geraniums, and hollyhocks are dicots.

Learning in the garden beats a textbook any day

Speaking with the students, they said they enjoyed being able to touch and feel the actual plants, make comparisons and learn within this physical context. They could see as James explained how even though Protea, lotus, Banksia and London plane tree (Platanus x acerifolia) looked very different, their DNA suggests they are more closely related than they appear. Genetic relatedness is traditionally illustrated using a cladogram – a branching tree with scientific names at the end of the branches, with no sense of what these species look like. What an opportunity to see what the diversity at the end of those branches can look like!
Students use pens to see how flowers are
adapted to distribute pollen on the
pollinators that visit them.
Photo credit: Nicola Temple

My time ran out before I could get as far as the sessions on pollination and plant evolution!  With my head spinning from this intensive and whistle-stop tour of some of the delights and extraordinary features of this garden, I sat on a bench in the autumn sunlight to reflect on the afternoon with fellow blogger, Nicola Temple, who had invited me take part in this day.

Like many of the students I spoke with as we went from location to location, I was delighted to have had the opportunity to understand the great thought behind the layout of the gardens.  There was far and away more here than I had bargained on.  I wanted to keep going but knew I could only take in so much on my first visit.  As we had gone around I had been surprised as an observer to note how quiet the students were, very few asking any questions.  Having stood back from it though I wonder if, like me, they were overwhelmed by the hidden depths to this exceptional garden. I’m certainly going to seek every opportunity to spend more time here, whether learning or simply enjoying the peaceful and stunning surroundings.
And I daresay I will come across many of the students from this day, pursuing their studies and enjoying the sheer delight and boundless wonderment that nature continues to shower upon us and that this garden so beautifully illustrates.

Botanists disperse some ‘big data’

Recently, Botanists at Trinity College Dublin launched a database with information that documents significant ‘life events’ for nearly 600 plant species across the globe. The database is the result of contributions from individuals working across five different continents, who compiled information on plant life histories for a near 50-year span, and is an example of big data.

What is ‘big data’?

Black pine (Pinus nigra), one of the species whose life
history data is part of the database, is seen against a
stunning backdrop of New Zealand. Credit: Yvonne Buckley.

In academic circles, the buzz-term across all disciplines seems to be ‘big data’, and it means exactly what it sounds like – a whole lot of information. More formally, of course, big data refers to data sets that are so large and complex that traditional methods of processing the information contained within them simply aren’t adequate. Big data draw upon many sources of information and represent a body of work that far exceeds what a single researcher, or indeed an entire research group, could gather in their careers.
While there are many challenges of working with big data – storing it, analysing, visualising it and ensuring its integrity to name a few – the benefits of working with such large data sets may make overcoming these challenges worthwhile. Repositories of such vast amounts of information can not only help foster collaborations, but they can be used to answer questions surrounding some of the most complex and pressing issues society currently faces, including climate change, food security, and mass species extinctions.
Of course, what is considered to be big data today will not be big data tomorrow as our management systems and computing capacity improve. This is the inevitable path of technological advancement; the Human Genome Project took over ten years (1990-2003) to sequence the human genome and now it can be done in a day for a fraction of the cost.

The importance of sharing knowledge

Plantago lanceolata at Howth Head, Dublin, Ireland – one of
the near 600 plant species that researchers have gathered
extensive life history data on. Credit: Anna Csergo.

The researchers at Trinity have made their database, called COMPADRE, freely available in the hope that other scientists access the information to advance their research. The size of the database means it can be used to help answer an infinite number of questions – such as how plant communities may respond to climate change or physiological processes that might provide insights into our own aging and health.
“Making the database freely available is our 21stCentury revamp of the similarly inspired investments in living plant collections that were made to botanic gardens through the centuries;” said Yvonne Buckley, Professor of Zoology at Trinity’s School of Natural Sciences, “these were also set up to bring economic, medicinal and agricultural advantages of plants to people all over the world. Our database is moving this gift into the digital age of ‘Big Data’.”
The approach of free knowledge sharing is becoming more common and is a critical step toward resolving some of our biggest challenges. The University of Bristol’s Cereal Genomics Group has made the wheat genome along with hundreds of thousands of molecular markers freely available through their searchable database CerealsDB. These data can be used in wheat breeding programmes to develop new varieties of wheat that are more resistant to disease or droughts or produce higher yields.

Our best chance of overcoming some of the global challenges of the 21st Century is to work together. Sharing knowledge through databases, such as COMPADRE and CerealsDB, will ensure every scientific contribution counts towards this united effort.