Bristol is buzzing, how the city is helping pollinators

By Helen Roberts

There has been a substantial amount of press coverage recently on the plight of our pollinators. They are now less abundant and widespread than they were in the 1950s. A number of threats are responsible, including habitat loss, disease, extreme weather, climate change and pesticide use.
A swathe of flowers for pollinators bring a
lot of cheeriness on a grey autumn day on
Horfield Common, Bristol.
Photo credit: Nicola Temple
There is not one smoking gun among these threats, but rather the combination that has endangered some species in the UK. Loss of wild flower rich habitat (due to intensive agriculture, industrialisation and urbanisation) escalates the effect of disease, extreme weather, climate change and pesticide use. Without food or shelter, pollinators are more vulnerable.

 Whilst visiting the University of Bristol Botanic Garden this autumn, I noticed the abundance of pollinators busily visiting many different flowers from the orchid look-a-like flower of Impatiens tinctoria to the swathes of Rudbeckia sp. and Verbena bonariensis. This year saw the 6th year of the University of Bristol Botanic Garden hosting the Bee and Pollination Festival in September. The Community Ecology Group from Bristol’s School of Biological Sciences was exhibiting and promoting their research as well as the exciting Get Bristol Buzzing initiative.
To find out more about pollinator research at the University, I met up with Dr Katherine Baldock, a Natural Environment Research Council Knowledge Exchange Fellow from the School of Biological Sciences and the Cabot Institute, to discuss the group’s work.
“Most people know that pollinators are important, but quite often don’t know what to do to help them, “ explained Katherine. “And this is where our research at the University comes into play”.
The aim of Katherine’s fellowship is to improve the value of the UK’s urban areas for pollinators by working with various stakeholders, such as city councils, conservation practitioners and the landscape industry. 

Translating science into solutions

NERC KE Fellow Dr Katherine Baldock.
Photo credit: Nicola Temple.

Up until 2014, Katherine worked on the Urban PollinatorsProject, which is researching insect pollinators and the plants they forage on in urban habitats.
Building upon research from this project and her current Fellowship, Katherine and her Bristol colleagues have contributed to the development of  a Greater Bristol Pollinator Strategy(2015-2020). The University research group has teamed up with Bristol CityCouncil, the Avon Wildlife Trust, Friends of the Earth Bristol, Buglife, SouthGloucestershire Council and the University of the West of England to implement this with the aim of protecting existing habitat and increasing pollinator habitat in the Greater Bristol area.
The group is also raising awareness of the importance of pollinators to a wide-ranging audience within the city and further afield. This is the first local pollinator strategy within the UK and follows closely in the wake of the Department for Environment, Food and Rural Affairs’ National Pollinator Strategy launched in 2014. It will help to promote aspects of the national strategy relevant to urban areas and hopefully set a precedent for the development of other local pollinator strategies throughout the UK.
The local pollinator strategy outlines actions that will help fulfill the strategy aims, including:
·         formation of a Local Pollinator Forum intended to share knowledge and best practice,
·         establishment of a joined-up approach to pollinator conservation by linking projects through the Get Bristol Buzzing initiative,
·         working with the public in local areas to explain actions they can take as individuals.
“Urban green spaces are important corridors for wildlife and help to provide linkages across the country”, explained Katherine. I envisaged a series of insect aerial motorways linking the whole of the UK, invisible threads connecting countryside, urban fringe and city centres.

The bee link-up

The Get Bristol Buzzing initiative is doing just that, as one of its strategic aims with the local pollinator strategy for 2016-2020, is to “Map pollinator habitat and identify target sites that allow habitat networks and stepping stones to be created to enable pollinators to move through urban areas”.
Katherine talked about how engaging the public at ground level was really important to Get Bristol Buzzing. The initiative is the pollinator component of My Wild City, a project whose vision is for people in Bristol to help transform spaces into a city-wide nature reserve. A number of interactive maps have been created that allow people to add what they have been doing in their area to help wildlife. The Get Buzzing initiative will feed into these maps.
Kath said, “The fact that you can add yourselves onto a map makes the Get Buzzing Initiative really visually appealing to people and much more personal.”

So, what can you do at home to help urban pollinators?

·         Plant for pollinators. Think about what plants you have in your garden. Could you change the planting or improve on it to make it more attractive to pollinators? Think about growing species that have nectar and pollen rich flowers and let your lawn grow longer to allow plants to flower.
·         Avoid pesticides. Most gardeners like their plants to remain pest free but avoid the temptation to use pesticides and accept the fact that you will lose some plants to pests. Instead try to encourage wildlife that will devour those pests or cultivate plants that will deter pests. 
·         Provide habitat. As pollinators need a home, you can always make your own nest boxes if you want to give your pollinating visitors a helping hand by drilling holes in a log or by bundling up lengths of hollow sticks such as bamboo. Visit the Botanic Garden’s bee hotel for inspiration!
“Setting aside a wild bit of garden can help pollinators by providing food, but provides nesting sites too”, remarked Katherine.

Additional information:

·         The Urban Pollinators Project was recently listed as one of the top 10 ground-breaking research projects in the Daily Telegraph. Read more.

·         Results from this research have recently been published in the Proceedings of the Royal Society B with more publications in press. A list of publications can be found here.

·         You can read more about Dr Katherine Baldock and the Urban Pollinators Project on page 7 of the 2015 edition of the Cabot Institute’s magazine.

Mud, glorious mud

By Jacqueline Campbell

Connections are often established in the most unexpected manner. How many times do you come away from a situation thinking “it’s a small world”, where just the opportune mention of a single word or phrase strikes a chord and is enough to foster new links and an avenue by which to share new ideas.
As unlikely as it seems, the words “pond mud” brought the Red Maids’ Schooltogether with the University of Bristol Botanic Garden recently. And from this link, students at the school have gone on to create their own miniature sustainable ecosystems using mud gathered from the garden’s mature and established ponds.

Marvellous muddy mesocosms

Mrs Turner, Head of Biology at Red Maids’ School, studying
the mesocosms.
Sixth Form students following the International Baccalaureate biology curriculum are required to complete a number of practical experiments. One of these is the creation of a mesocosm known as a Winogradsky column; essentially a self-contained, sustainable ecosystem grown in a sealed plastic bottle under controlled conditions.
A critical element of this experiment is pond mud. As they are situated no more than a couple of miles apart, the Red Maids’ School approached staff at the Botanic Garden for their advice and assistance in setting up such an ecosystem.  A number of phone calls and a few visits later, two groups of students have used pond mud sourced from the Botanic Garden and are watching to see the bacteria in their stratified ecosystems develop. 
The mesocosms in this image are just a few hours old.
Images are taken every two days to track and record the changes
over time.
The mesocoms now live on a sunny window sill in the Biology Department at Red Maids’, and are a constant source of curiosity to all. Despite a little reluctance mainly associated with the smell of pond mud, the students involved are thrilled to have created their own ecosystems and are often now found enthusing about the colour of their bacteria and amount of respiration they can see.
Images taken every two days are providing a good record of how the ecosystems are developing over time. From an initial cloudy but uniform situation, clearly defined layers are forming coupled with a notable increase in the pressure within the bottles showing the incredible amount of respiration that is occurring within the system.

Bacteria of many colours

Students have seen the pressure within their ecosystems
increase over time thanks to the highly visible levels of
respiration occurring within the sealed environment. A range
of different coloured bacteria are also now present.
The ingredients required to create the Winogradsky column are: pond mud, shredded newspaper, crushed egg shells and raw egg yolk. Pond mud provides a suitable base while the newspaper, egg shell and egg yolk provide sources of carbon, carbon dioxide and sulphur respectively. As a first step, these components are mixed together and poured into the bottom of a plastic fizzy drinks bottle.
On top of this layer comes another of compost, followed finally by some pond water. The idea is that many different coloured layers of bacteria develop, and each of these transforms molecules for the others to use. And as long as there is light entering the system, the column should theoretically continue to maintain a healthy microbial ecosystem for many months.
Waiting to develop: Over time, students at Red Maids’ hope
to see their Winogradsky columns develop into a stratified
system. This will provide a visual example of various modes of
metabolism and zonation in the microbial world. The
mesocosm shown in this image is several months old. 
Conditions at the bottom of the column are highly anaerobic with a high sulphide concentration ideal for the growth of sulphate reducing bacteria, green sulphur bacteria and purple sulphur bacteria. Moving higher in the column, with conditions becoming more aerobic and a reduction in sulphide concentration, we can expect to see the development of purple non-sulphur bacteria, iron-oxidizing bacteria, heterotrophic bacteria and cyanobacteria. 
Of course none of this would be possible without the kind assistance of the Botanic Garden staff, who waded into freezing winter waters to collect the mud. The Red Maids’ School is very grateful to have established this connection, and hopes that it too will blossom over time. 

Dr Jacqueline Campbell has a PhD in physics from St Andrews University and twelve years of editorial experience working for the Institute of Physics Publishing and as a freelance journalist. She now works as a science technician at the Red Maids’ School.